Respuesta :

gmany

Answer:

7x - 4y + 18 = 0

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

========================================

Let

[tex]k:y=m_1x+b_1\\\\l:y=m_2x+b_2\\\\l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}\\\\l\ \parallel\ k\iff m_1=m_2[/tex]

========================================

We have the equation of a line in a general form (Ax + By + C = 0)

Convert it to the slope-intercept form:

[tex]4x+7y+3=0[/tex]             subtract 7y from both sides

[tex]4x+3=-7y[/tex]         divide both sides by (-7)

[tex]-\dfrac{4}{7}x-\dfrac{3}{7}=y\to m_1=-\dfrac{4}{7}[/tex]

Therefore

[tex]m_2=-\dfrac{1}{-\frac{4}{7}}=\dfrac{7}{4}[/tex]

We have the equation:

[tex]y=\dfrac{7}{4}x+b[/tex]

Put the coordinates of the point (-2, 1) to the equation, and solve for b :

[tex]1=\dfrac{7}{4}(-2)+b[/tex]

[tex]1=-\dfrac{7}{2}+b[/tex]     multiply both sides by 2

[tex]2=-7+2b[/tex]           add 7 to both sides

[tex]9=2b[/tex]            divide both sides by 2

[te]x\dfrac{9}{2}=b\to b=\dfrac{9}{2}[/tex]

Finally:

[tex]y=\dfrac{7}{4}x+\dfrac{9}{2}[/tex] - slope-intercept form

Convert to the general form:

[tex]y=\dfrac{7}{4}x+\dfrac{9}{2}[/tex]         multiply both sides by 4

[tex]4y=7x+18[/tex]      subtract 4y from both sides

[tex]0=7x-4y+18[/tex]