Respuesta :
Answer:
Option A. [tex]f(x)=86[1.04]^{x}[/tex] ; grows approximately at a rate of 0.4% daily
Step-by-step explanation:
we have
[tex]f(x)=86(1.29)^{x}[/tex]
where
f(x) the number of weeds in the garden
x ----> the number of weeks
Calculate how quickly the weeds grow each day
Remember that a week is equal to seven days
so
[tex]f(x)=86(1.29)^{\frac{x}{7}}[/tex]
Using the law of exponents
b^(x/a) = b^(x*(1/a)) = (b^(1/a))^x
so
[tex]f(x)=86[(1.29)^{\frac{1}{7}}]^{x}[/tex]
[tex]f(x)=86[1.04]^{x}[/tex]
therefore
The rate is approximately
1.04=1+r
r=1.04-1=0.04=4% daily
not sorry, but guy above is w.r.o.n.g
0.4 ain't right
yw for saving you an attempt