Answer:
443.3 N
567.4 N
Explanation:
Consider the triangle ABC
AC = hypotenuse = magnitude of force vector = F = 720 N
AB = adjacent = Component of force along east-west line = [tex]F_{x}[/tex]
BC = Opposite = Component of force along north-south line = [tex]F_{y}[/tex]
θ = Angle = 38 deg
In triangle ABC
[tex]Sin38 = \frac{BC}{AC}[/tex]
[tex]Sin38 = \frac{F_{y}}{F}[/tex]
[tex]0.616 = \frac{F_{y}}{720}[/tex]
[tex]F_{y}[/tex] = 443.3 N
Also, In triangle ABC
[tex]Cos38 = \frac{AB}{AC}[/tex]
[tex]Cos38 = \frac{F_{x}}{F}[/tex]
[tex]0.788 = \frac{F_{x}}{720}[/tex]
[tex]F_{x}[/tex] = 567.4 N