A car drives over the top of a hill that has a radius of 40 m. ? Part A What maximum speed can the car have without flying off the road at the top of the hill?

Respuesta :

Answer:

Maximum speed = 19.81 m/s

Explanation:

Maximum speed can the car have without flying off the road at the top of the hill.

For this condition to occur we have

         Centripetal force ≥ Weight of car.

          [tex]\frac{mv^2}{r}\geq mg[/tex]

For maximum speed without flying we have

        [tex]\frac{mv^2}{r}=mg\\\\\frac{v^2}{r}=g\\\\v=\sqrt{rg}=\sqrt{40\times 9.81}=19.81m/s[/tex]

Maximum speed = 19.81 m/s

The maximum speed of the car on top of hill is 19.8 m/s.

The given parameters;

radius of the hill, r = 40 m

The maximum speed of the car on top of hill is calculated as follows;

the centripetal force must be equal or greater than weight of the car.

[tex]F_c = mg\\\\\frac{mv^2}{r} = mg\\\\\frac{v^2}{r} = g\\\\v^2 = rg\\\\v = \sqrt{rg} \\\\v = \sqrt{40 \times 9.8} \\\\v = 19.80 \ m/s[/tex]

Thus, the maximum speed of the car on top of hill is 19.8 m/s.

Learn more here:https://brainly.com/question/20905151