Respuesta :

It's not true for any [tex]t[/tex], but it is for [tex]t=\pi[/tex].

Start with [tex]n=0[/tex] (which is even). Then

[tex]\cos(0\pi)=\cos0=1[/tex]

The cosine function is [tex]2\pi[tex]-periodic, meaning that for any [tex]x[/tex] we have

[tex]\cos(x+2\pi)=\cos x[/tex]

Now, [tex]2\pi=0+2\pi[/tex], so

[tex]\cos(2\pi)=\cos(0+2\pi)=\cos0=1[/tex]

This is the basis for an argument via induction to show that [tex]\cos(n\pi)=1[/tex] whenever [tex]n[/tex] is even. Also, when [tex]n[/tex] is even we have [tex](-1)^n=1[/tex].

In a similar way, starting with the fact that

[tex]\cos(1\pi)=\cos\pi=-1[/tex]

and that [tex]\cos x[/tex] is periodic, we have

[tex]\cos(3\pi)=\cos(\pi+2\pi)=\cos\pi=-1[/tex]

and so for odd [tex]n[/tex] we have [tex]\cos(n\pi)=-1=(-1)^n[/tex].