The function f(x) = x2 + 22x + 58 is translated 4 units to the right and 16 units up. What is the vertex form of the new function? (x – 11)2 + 58 (x + 22)2 – 121 (x + 7)2 – 47 (x – 15)2 + 94

Respuesta :

Answer:

The new function is (x + 7)² - 47 ⇒ the 3rd answer

Step-by-step explanation:

* Lets put the function f(x) in the vertex form at first and then make

 the translation

∵ The general form of the quadratic function is

  f(x) = ax² + bx + c

∵ The x-coordinate of the vertex of the function is -b/2a

∵ The y-coordinate of the vertex of the function is f(-b/2a)

- Lets find a , b from the function two find the vertex point

∵ f(x) = x² + 22x + 58

∴ a = 1 , b = 22 , c = 58

∵ x-coordinate of the vertex = -b/2a

∴ x-coordinate of the vertex = -22/2(1) = -11

∵ y-coordinate of the vertex = f(-11)

∴ f(-11) = (-11)² + 22(-11) + 58 = 121 - 242 + 58 = -63

∴ The vertex point is (-11 , -63)

- The vertex form of the quadratic function is f(x) = (x - h)² + k , where

  (h , k) are the coordinates of the vertex point

∵ The vertex point is (-11 , -63)

∴ h = -11 , k = -63

∴ f(x) = (x - -11)² + -63

∴ f(x) = (x + 11)² - 63

* lets revise the rules of the translation

- If the function f(x) translated horizontally to the right  

 by m units, then the new function g(x) = f(x - m)

- If the function f(x) translated horizontally to the left  

 by m units, then the new function g(x) = f(x + m)

- If the function f(x) translated vertically up  

 by n units, then the new function g(x) = f(x) + n

- If the function f(x) translated vertically down  

 by n units, then the new function g(x) = f(x) – n

∵ f(x) will translate 4 units to the right

∴ m = 4

∵ f(x) ⇒ f(x - m)

∴ (x + 11)²  ⇒ (x + 11 - 4)² = (x + 7)²

∵f(x) will translate 16 units up

∴ -63 will add by 16

∴ n = 16

∴ f(x) ⇒ f(x) + n

∵ -63 + 16 = -47

∴ The new function is (x + 7)² - 47

Answer:

(x + 7)^2 - 47

Step-by-step explanation:

just answered this on my class