Answer:
[tex]\large\boxed{3^\frac{2}{3}}[/tex]
Step-by-step explanation:
[tex]Use\\\\\sqrt[n]{a^m}=a^\frac{m}{n}\\\\(a^n)^m=a^{nm}\\\\a^n\cdot a^m=a^{n+m}\\\\\bigg(\sqrt[4]{9^{15}}\cdot\sqrt{3^3}\bigg)^\frac{2}{27}=\bigg(\sqrt[4]{(3^2)^{15}}\cdot3^\frac{3}{2}\bigg)^\frac{2}{27}=\bigg(\sqrt[4]{3^{2\cdot15}}\cdot3^{\frac{3}{2}}\bigg)^\frac{2}{27}\\\\=\bigg(3^{\frac{30}{4}}\cdot3^\frac{3}{2}\bigg)^\frac{2}{27}=\bigg(3^{\frac{15}{2}}\cdot3^\frac{3}{2}\bigg)^\frac{2}{27}=\bigg(3^{\frac{15}{2}+\frac{3}{2}}\bigg)^\frac{2}{27}[/tex]
[tex]=\bigg(3^{\frac{18}{2}}\bigg)^\frac{2}{27}=\bigg(3^9\bigg)^\frac{2}{27}=3^{9\cdot\frac{2}{27}}=3^\frac{2}{3}[/tex]