In the graph, the area below f(x) is shaded and labeled A, the area below g(x) is shaded and labeled B, and the area where f(x) and g(x) have shading in common labeled AB.

A
[tex]y \leqslant - 2 + 3 \\ y \leqslant x + 3[/tex]
B
[tex]y \geqslant - 2x + 3 \\ y \geqslant x + 3[/tex]
C
[tex]y \leqslant - 3x + 2 \\ y \leqslant - x + 2[/tex]
D
[tex]y > - 2x + 3 \\ y > x + 3[/tex]

In the graph the area below fx is shaded and labeled A the area below gx is shaded and labeled B and the area where fx and gx have shading in common labeled ABA class=

Respuesta :

gmany

Answer:

[tex]\large\boxed{A.\ y\leq-2x+3,\ y\leq x+3}[/tex]

Step-by-step explanation:

<, > - dotted line

≤, ≥ - solid line

<, ≤ - shaded region below the line

>, ≥ - shaded region above the line

=============================================

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept → (0, b)

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

From the graph we have the points:

(0, 3) - y-intercept → b = 3 (for both lines)

f(x)

(0, 3), (1, 1)

[tex]m=\dfrac{1-3}{1-0}=\dfrac{-2}{1}=-2[/tex]

Substitute:

[tex]f(x):\ y=-2x+3[/tex]

The shaded region is below the solid line. Therefore: [tex]y\leq-2x+3[/tex]

g(x):

(0, 3), (2, 5)

[tex]m=\dfrac{5-3}{2-0}=\dfrac{2}{2}=1[/tex]

Substitute:

[tex]g(x):\ y=1x+3=x+3[/tex]

The shaded region is below the solid line. Therefore: [tex]y\leq x+3[/tex]

Ver imagen gmany

Answer:

b

Step-by-step explanation: