Answer: 161.8 torr
Explanation:
According to Raoult's law, the vapor pressure of a component at a given temperature is equal to the mole fraction of that component multiplied by the vapor pressure of that component in the pure state.
[tex]p_1=x_1p_1^0[/tex] and [tex]p_2=x_2P_2^0[/tex]
where, x = mole fraction
[tex]p^0[/tex] = pressure in the pure state
According to Dalton's law, the total pressure is the sum of individual pressures.
[tex]p_{total}=p_1+p_2[/tex][tex]p_{total}=x_Ap_A^0+x_BP_B^0[/tex]
[tex]x_{A}=\frac{\text {moles of A}}{\text {moles of A+moles of B}}=\frac{5.50}{5.50+8.50}=0.39[/tex],
[tex]x_{B}=\frac{\text {moles of B}}{\text {moles of A+moles of B}}=\frac{8.50}{5.50+8.50}=0.61[/tex],
[tex]p_{A}^0=264torr[/tex]
[tex]p_{B}^0=96.5torr[/tex]
[tex]p_{total}=0.39\times 264+0.61\times 96.5=161.8torr[/tex]
The total vapor pressure above the solution is 161.8 torr.