What is the freezing point of water made by dissolving 22.78 g of ethylene glycol (CH2(OH)CH2(OH)) in 87.95 g of water? The freezing-point depression constant of water is 1.86 oC/m.

Respuesta :

Explanation:

When a non-volatile solute is added in a solvent then decrease in its freezing point is known as freezing point depression.

Mathematically,     [tex]\Delta T = K_{f}m[/tex]

where      [tex]\Delta T[/tex] = change in freezing point

                     [tex]K_{f}[/tex] = freezing point depression constant [tex]\text({in ^{o}C/mol/kg})[/tex]

                           m = molality

First, calculate the number of moles as follows.

                       No. of moles = [tex]\frac{\text{mass of solute}}{\text{molar mass of solute}}[/tex]

                                             = [tex]\frac{22.78g}{62.07 g/mol}[/tex]

                                             = 0.367 mol

Now, it is given that mass of solvent is 87.95 g. As there are 1000 grams in 1 kg.

So,          [tex]87.95g \times \frac{1 kg}{1000 g}[/tex] = 0.08795 kg

Hence, molality of the given solution is as follows.

                   Molality = [tex]\frac{\text{no. of moles}}{\text{mass in kg}}[/tex]

                                 = [tex]\frac{0.367 mol}{0.08795}[/tex]

                                 = 4.172 mol/kg

Therefore, depression in freezing point will be as follows.

                          [tex]\Delta T = K_{f}m[/tex]

            [tex]T_{solvent} - T_{mixture}[/tex] = [tex]K_{f}m[/tex]

Since, freezing point of pure water is [tex]0^{o}C[/tex]. Now, putting the given values as follows.

                [tex]0^{o}C - T_{mixture}[/tex] = [tex]1.86^{o}C/m \times 4.172mol/kg[/tex]

                                         = [tex]-7.759 ^{o}C[/tex]

Thus, we can conclude that the freezing point of water in the given mixture is [tex]-7.759 ^{o}C[/tex].