for a vertically opening parabola, its axis of symmetry will come from the x-coordinate of its vertex, thus
[tex]\bf \textit{vertex of a vertical parabola, using coefficients} \\\\ y=\stackrel{\stackrel{a}{\downarrow }}{1}x^2\stackrel{\stackrel{b}{\downarrow }}{-6}x\stackrel{\stackrel{c}{\downarrow }}{-7} \qquad \qquad \left(-\cfrac{ b}{2 a}~~~~ ,~~~~ c-\cfrac{ b^2}{4 a}\right) \\\\\\ \left( -\cfrac{-6}{2(1)}~~,~~-7-\cfrac{(-6)^2}{4(1)} \right)\implies (3~~,~~-7-9)\implies (3~~,~~-16) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{axis of symmetry}}{x=3}~\hfill[/tex]