The equation of the tangent plane to the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 at the point (x0, y0, z0) can be written as xx0 a2 + yy0 b2 + zz0 c2 = 1 Find the equation of the tangent plane to the hyperboloid x2/a2 + y2/b2 − z2/c2 = 1 at (x0, y0, z0) and express it in a form similar to the one for the ellipsoid.

Respuesta :

Answer:

The equation of tangent plane to the hyperboloid

[tex]\frac{xx_0}{a^2}+\frac{yy_0}{b^2}-\frac{zz_0}{c^2}=1[/tex].

Step-by-step explanation:

Given

The equation of ellipsoid

[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1[/tex]

The equation of tangent plane at the point [tex]\left(x_0,y_0,z_0\right)[/tex]

[tex]\frac{xx_0}{a^2}+\frac{yy_0}{b^2}+\frac{zz_0}{c^2}=1[/tex]  ( Given)

The equation of hyperboloid

[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1[/tex]

F(x,y,z)=[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}[c^2}[/tex]

[tex] F_x=\frac{2x}{a^2},F_y=\frac{2y}{b^2},F_z=-\frac{2z}{c^2}[/tex]

[tex] (F_x,F_y,F_z)(x_0,y_0,z_0)=\left(\frac{2x_0}{a^2},\frac{2y_0}{b^2},-\frac{2z_0}{c^2}\right)[/tex]

The equation of tangent plane at point [tex]\left(x_0,y_0,z_0\right)[/tex]

[tex]\frac{2x_0}{a^2}(x-x_0)+\frac{2y_0}{b^2}(y-y_0)-\farc{2z_0}{c^2}(z-z_0)=0[/tex]

The equation of tangent plane to the hyperboloid

[tex]\frac{2xx_0}{a^2}+\frac{2yy_0}{b^2}-\frac{2zz_0}{c^2}-2\left(\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}-\frac{z_0^2}{c^2}\right)=0[/tex]

The equation of tangent plane

[tex]2\left(\frac{xx_0}{a^2}+\frac{yy_0}{b^2}-\frac{zz_0}{c^2}\right)=2[/tex]

Hence, the required equation of tangent plane to the hyperboloid

[tex]\frac{xx_0}{a^2}+\frac{yy_0}{b^2}-\frac{zz_0}{c^2}=0[/tex]

The equation of the tangent plane to the ellipsoid at the given point is [tex]\frac{xx^0}{a^2} + \frac{yy^0}{b^2} - \frac{zz^0}{c^2} = 1[/tex]

The equation of the tangent plane to the ellipsoid is given as:

[tex]\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1[/tex]

The point on the ellipsoid is given as:

(x0, y0, z0)

The equation of the tangent plane to the ellipsoid at the given point can be written as:

[tex]\frac{xx^0}{a^2} + \frac{yy^0}{b^2} + \frac{zz^0}{c^2} = 1[/tex]

Given that the equation of the tangent plane to the hyperboloid is

[tex]\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1[/tex]

The equations at the tangents of the ellipsoid and the hyperboloid take the same form.

So, the equation of the tangent plane to the ellipsoid at the given point is [tex]\frac{xx^0}{a^2} + \frac{yy^0}{b^2} - \frac{zz^0}{c^2} = 1[/tex]

Read more about tangent planes at:

https://brainly.com/question/15465847