Respuesta :
Answer:
4th option
Step-by-step explanation:
The given expression is:
[tex]\frac{1}{1+\sqrt{3}}[/tex]
In order to simplify this expression we have to multiply and divide it with the conjugate of the denominator i.e multiply and divide the entire expression with [tex]1-\sqrt{3}[/tex], as shown below:
[tex]\frac{1}{1+\sqrt{3}}\\=\frac{1}{1+\sqrt{3}} \times \frac{1-\sqrt{3}}{1-\sqrt{3}}\\=\frac{1-\sqrt{3}}{(1)^{2}-(\sqrt{3})^{2}}\\\\ =\frac{1-\sqrt{3}}{1-3}\\\\ =\frac{1-\sqrt{3}}{-2}\\\\ =\frac{-1(1-\sqrt{3})}{2}\\\\ =\frac{-1+\sqrt{3}}{2}[/tex]
Thus, 4th option gives the correct answer.
Answer:
The right option is D -1+√3/2
Step-by-step explanation:
To find the quotient of the sure function 1/1+√3, we will rationalize the surd function by multiplying the numerator and the denominator of the surd by the conjugate of its denominator.
Given he denominator to be 1+√3, the conjugate of 1+√3 is 1-√3
Multiplying by 1-√3 will result in the following;
1/1+√3×1-√3/1-√3
= 1-√3/(1+√3)(1-√3)
= 1-√3/1-√3+√3-√9
= 1-√3/1-√9
= 1-√3/1-3
= 1-√3/-2
= -(1-√3)/2
= -1+√3/2
The right option is D -1+√3/2