Respuesta :
By definition of expectation,
[tex]\displaystyle E[X]=\sum_xx\,P(X=x)=\sum_{x=1}^n\frac xn=\frac{n(n+1)}{2n}=\boxed{\frac{n+1}2}[/tex]
and variance,
[tex]V[X]=E[(X-E[X])^2]=E[X^2-2X\,E[X]+E[X]^2]=E[X^2]-E[X]^2[/tex]
Also by definition, we have
[tex]E[f(X)]=\displaystyle\sum_xf(x)\,P(X=x)[/tex]
so that
[tex]E[X^2]=\displaystyle\sum_{x=1}^n\frac{x^2}n=\frac{n(n+1)(2n+1)}{6n}=\frac{(n+1)(2n+1)}6[/tex]
and finally,
[tex]V[X]=\dfrac{(n+1)(2n+1)}6-\dfrac{(n+1)^2}4=\boxed{\dfrac{n^2-1}{12}}[/tex]
Answer:
[tex]\frac{n^{2} - 1 }{12}[/tex]
Step-by-step explanation:
Data:
We collect the variables and simplify the result:
E[X] = [tex]\SIGMA \\[/tex]Σ x · p(x) = [tex]\frac{1}{n}[/tex]= ....
E[X²] =∑ x²· p(x) = ∑x²·[tex]\frac{1}{n}[/tex] = ....
Var [X] = E[X²] - E[X]² = ...
We then use the identities:
∑x = [tex]\frac{n(n+1)}{2}[/tex] and ∑ x² = [tex]\frac{n(n+1)(2n+1)}{6}[/tex]
simplifying the identities above gives:
[tex]\frac{n^{2-1} }{12}[/tex]