Respuesta :

Answer:

The simplified form of given expression[tex]\frac{15xy}{5x^{\frac{1}{2}}y^2}[/tex] is [tex]\frac{3x^{\frac{1}{2}}}{y}[/tex]

Step-by-step explanation:

Given: Expression [tex]\frac{15xy}{5x^{\frac{1}{2}}y^2}[/tex]

We have to write the given expression in simplified form,

Consider the given expression [tex]\frac{15xy}{5x^{\frac{1}{2}}y^2}[/tex]

Divide the numbers [tex]\frac{15}{5}=3[/tex]

we get,

[tex]=\frac{3xy}{y^2x^{\frac{1}{2}}}[/tex]

Apply exponent rule , [tex]\frac{x^a}{x^b}\:=\:x^{a-b}[/tex]

[tex]\frac{x}{x^{\frac{1}{2}}}=x^{1-\frac{1}{2}}=x^{\frac{1}{2}}[/tex]

we get,

[tex]=\frac{3yx^{\frac{1}{2}}}{y^2}[/tex]

Cancel y term, we have,

[tex]=\frac{3x^{\frac{1}{2}}}{y}[/tex]

Thus, The simplified form of given expression[tex]\frac{15xy}{5x^{\frac{1}{2}}y^2}[/tex] is [tex]\frac{3x^{\frac{1}{2}}}{y}[/tex]

Answer:

[tex]3x^{\frac{1}{2}}y^{-1}[/tex]

Step-by-step explanation:

The given expression is:

[tex]\frac{15xy}{5x^{\frac{1}{2}}y^2}[/tex]

We have to simplify the above given expression.Thus,

Firstly, divide the constant terms, we get

[tex]\frac{15}{5}=3[/tex]

Now, applying the exponent law, that is [tex]\frac{x^a}{x^b}=x^{a-b}[/tex], we have

[tex]\frac{xy}{x^{\frac{1}{2}}y^2}=x^{1-\frac{1}{2}}y^{1-2}=x^{\frac{1}{2}}y^{-1}[/tex]

Thus, the simplified form of the above given equation is:

[tex]3x^{\frac{1}{2}}y^{-1}[/tex]