Respuesta :
Answer:
The simplified form of given expression[tex]\frac{15xy}{5x^{\frac{1}{2}}y^2}[/tex] is [tex]\frac{3x^{\frac{1}{2}}}{y}[/tex]
Step-by-step explanation:
Given: Expression [tex]\frac{15xy}{5x^{\frac{1}{2}}y^2}[/tex]
We have to write the given expression in simplified form,
Consider the given expression [tex]\frac{15xy}{5x^{\frac{1}{2}}y^2}[/tex]
Divide the numbers [tex]\frac{15}{5}=3[/tex]
we get,
[tex]=\frac{3xy}{y^2x^{\frac{1}{2}}}[/tex]
Apply exponent rule , [tex]\frac{x^a}{x^b}\:=\:x^{a-b}[/tex]
[tex]\frac{x}{x^{\frac{1}{2}}}=x^{1-\frac{1}{2}}=x^{\frac{1}{2}}[/tex]
we get,
[tex]=\frac{3yx^{\frac{1}{2}}}{y^2}[/tex]
Cancel y term, we have,
[tex]=\frac{3x^{\frac{1}{2}}}{y}[/tex]
Thus, The simplified form of given expression[tex]\frac{15xy}{5x^{\frac{1}{2}}y^2}[/tex] is [tex]\frac{3x^{\frac{1}{2}}}{y}[/tex]
Answer:
[tex]3x^{\frac{1}{2}}y^{-1}[/tex]
Step-by-step explanation:
The given expression is:
[tex]\frac{15xy}{5x^{\frac{1}{2}}y^2}[/tex]
We have to simplify the above given expression.Thus,
Firstly, divide the constant terms, we get
[tex]\frac{15}{5}=3[/tex]
Now, applying the exponent law, that is [tex]\frac{x^a}{x^b}=x^{a-b}[/tex], we have
[tex]\frac{xy}{x^{\frac{1}{2}}y^2}=x^{1-\frac{1}{2}}y^{1-2}=x^{\frac{1}{2}}y^{-1}[/tex]
Thus, the simplified form of the above given equation is:
[tex]3x^{\frac{1}{2}}y^{-1}[/tex]