Answer:
[tex]5y^{6}\sqrt{2}[/tex]
Step-by-step explanation:
We want to simplify:
[tex]\sqrt{50y^{12}}[/tex]
We rewrite as:
[tex]\sqrt{2\times25 \times (y^{6})^2}[/tex]
We split the radical sign to obtain:
[tex]\sqrt{25} \times \sqrt{(y^{6})^2} \times \sqrt{2}[/tex]
Simplify the square root for the perfect squares to get:
[tex]5y^{6}\sqrt{2}[/tex]
Therefore the simplified form is: [tex]5y^{6}\sqrt{2}[/tex]