Respuesta :
Answer:
option C is correct.
Step-by-step explanation:
The area of triangle with sides a, b and c can be found by using formula
[tex]Area = \sqrt{s(s-a)(s-b)(s-c)} \\where \\s= \frac{1}{2}(a+b+c)[/tex]
We are given:
a= 20
b=30
c=40
Finding s:
Putting values in the formula and solving:
[tex]s= \frac{1}{2}(a+b+c)\\s=\frac{1}{2}(20+30+40)\\s=\frac{90}{2}\\s= 45[/tex]
Now, Finding the area:
Putting values in the formula and solving:
[tex]Area = \sqrt{s(s-a)(s-b)(s-c)}\\Area =\sqrt{45(45-20)(45-30)(45-40)}\\Area =\sqrt{45(25)(15)(5)}\\Area = \sqrt{84,375} \\Area = 290.5 units^2[/tex]
So, option C 290.5 units^2 is correct.
Answer:
option C 290.5 units^2 is correct.
Step-by-step explanation: