Respuesta :
Answer:
The domain of (f*g) (x) is the set of all real numbers; ( -∞, ∞)
Step-by-step explanation:
(f*g) (x) simply means we obtain the product of f(x) and g(x). We are given that;
f(x)=2x
g(x)= 1/x
(f*g) (x) = f(x) * g(x)
(f*g) (x) = 2x * 1/x = 2
This is a horizontal line defined everywhere on the real line. The domain of (f*g) (x) is thus ( -∞, ∞)
Answer:
All real numbers
Step-by-step explanation:
Given : [tex]f(x)=2x[/tex]
[tex]g(x)= \frac{1}{x}[/tex]
To Find : the domain of (f*g) (x)
[tex]f(x)=2x[/tex]
[tex]g(x)= \frac{1}{x}[/tex]
[tex](f\cdot g)(x)=2x \times \frac{1}{x}[/tex]
[tex](f\cdot g)(x)=2[/tex]
Since the value of [tex](f\cdot g)(x)=2[/tex]
So, the domain of the function is [tex](f\cdot g)(x)[/tex] is all real numbers .