Respuesta :

Answer:

The domain of (f*g) (x) is the set of all real numbers; ( -∞, ∞)

Step-by-step explanation:

(f*g) (x) simply means we obtain the product of f(x) and g(x). We are given that;

f(x)=2x

g(x)= 1/x

(f*g) (x) = f(x) * g(x)

(f*g) (x) = 2x * 1/x = 2

This is a horizontal line defined everywhere on the real line. The domain of  (f*g) (x) is thus ( -∞, ∞)

Answer:

All real numbers

Step-by-step explanation:

Given : [tex]f(x)=2x[/tex]

           [tex]g(x)= \frac{1}{x}[/tex]

To Find : the domain of (f*g) (x)

[tex]f(x)=2x[/tex]

[tex]g(x)= \frac{1}{x}[/tex]

[tex](f\cdot g)(x)=2x \times \frac{1}{x}[/tex]

[tex](f\cdot g)(x)=2[/tex]

Since the value of [tex](f\cdot g)(x)=2[/tex]

So, the domain of the function is [tex](f\cdot g)(x)[/tex] is all real numbers .