Answer:
346 trucks are needed
Step-by-step explanation:
We know that one acre equals 43560 feet ^ 2
In this case the area is 3 acres. So:
[tex]3\ acres * \frac{43,560\ ft^2}{1\ acre} = 130,680\ ft^2[/tex]
We know that 1 foot equals 12 inches. So:
[tex]24\ in * \frac{1\ ft}{12\ in} = 2\ ft[/tex]
So the volume of the contaminated area is:
[tex]V = 2* 130,680\ ft^3\\\\V = 261,360\ ft^3[/tex]
In a cubic yard there are 27 cubic feet. So:
[tex]28\ yard^2 * \frac{27\ ft^3}{1\ yard^3} = 756\ ft^3[/tex]
Finally if we have a volume of [tex]261,360\ ft ^ 3[/tex] and each truck can transport [tex]756\ ft ^ 3[/tex] then the amount of trucks x we need is:
[tex]x = \frac{261,360\ ft ^ 3}{756\ ft ^ 3} = 346\ trucks[/tex]