Respuesta :

x^2+8x-2=18

x^2+8x-2-18= 18-18

x^2+8x-20= 0

(x-2)(x+10)=0

x-2= 0 , x+10=0

x-2+2= 0+2, x+10-10= 0-10

x=2 , x=-10

Answers are x= 2 -B, x=-10 -A.

Answer:

Option A and B

Step-by-step explanation:

Given : Quadratic equation [tex]x^2+8x-2=18[/tex]

To find : Complete the square to solve the equation below check all that apply ?

Solution :

Re-write, [tex]x^2+8x-2=18[/tex]

[tex]x^2+8x-20=0[/tex]

Applying quadratic formula,

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Here, a=1 , b=8, c=-20

[tex]x=\frac{-8\pm\sqrt{8^2-4(1)(-20)}}{2(1)}[/tex]

[tex]x=\frac{-8\pm\sqrt{64+80}}{2}[/tex]

[tex]x=\frac{-8\pm\sqrt{144}}{2}[/tex]

[tex]x=\frac{-8\pm12}{2}[/tex]

[tex]x=-4\pm6[/tex]

[tex]x=-4+6,-4-6[/tex]

[tex]x=2,-10[/tex]

The solution of the equation is x=2,-10.

Therefore, Option A,B satisfy the equation.