Respuesta :
x^2+8x-2=18
x^2+8x-2-18= 18-18
x^2+8x-20= 0
(x-2)(x+10)=0
x-2= 0 , x+10=0
x-2+2= 0+2, x+10-10= 0-10
x=2 , x=-10
Answers are x= 2 -B, x=-10 -A.
Answer:
Option A and B
Step-by-step explanation:
Given : Quadratic equation [tex]x^2+8x-2=18[/tex]
To find : Complete the square to solve the equation below check all that apply ?
Solution :
Re-write, [tex]x^2+8x-2=18[/tex]
[tex]x^2+8x-20=0[/tex]
Applying quadratic formula,
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Here, a=1 , b=8, c=-20
[tex]x=\frac{-8\pm\sqrt{8^2-4(1)(-20)}}{2(1)}[/tex]
[tex]x=\frac{-8\pm\sqrt{64+80}}{2}[/tex]
[tex]x=\frac{-8\pm\sqrt{144}}{2}[/tex]
[tex]x=\frac{-8\pm12}{2}[/tex]
[tex]x=-4\pm6[/tex]
[tex]x=-4+6,-4-6[/tex]
[tex]x=2,-10[/tex]
The solution of the equation is x=2,-10.
Therefore, Option A,B satisfy the equation.