Find exact solution of
[tex] \cos( {2x - \frac{\pi}{2} })^{2} = 1 - \sin(2x - \frac{\pi}{2} ) [/tex]
for
[tex]0 \leqslant x \leqslant 3\pi[/tex]

Respuesta :

For starters, let [tex]y=2x-\dfrac\pi2[/tex].

Then

[tex]\cos^2y=1-\sin y[/tex]

[tex]1-\sin^2y=1-\sin y[/tex]

[tex]\sin^2y-\sin y=0[/tex]

[tex]\sin y(\sin y-1)=0[/tex]

so either

[tex]\sin y=0\implies y=n\pi[/tex]

or

[tex]\sin y-1=0\implies\sin y=1\implies y=\dfrac\pi2+2n\pi[/tex]

for integers [tex]n[/tex]. Solving for [tex]x[/tex] gives us

[tex]2x-\dfrac\pi2=\dfrac\pi2+2n\pi\implies x=\dfrac\pi2+n\pi[/tex]

or

[tex]2x-\dfrac\pi2=n\pi\implies x=\dfrac\pi4+\dfrac{n\pi}2[/tex]

We get the following solutions for [tex]0\le x\le3\pi[/tex]:

[tex]x=\dfrac\pi2,\dfrac{3\pi}2,\dfrac{5\pi}2[/tex]

or

[tex]x=\dfrac\pi4,\dfrac{3\pi}4,\dfrac{5\pi}4,\dfrac{7\pi}4,\dfrac{9\pi}4,\dfrac{11\pi}4[/tex]