Respuesta :
[tex]\bf \textit{Pythagorean Identities} \\\\ sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{csc(\theta )-sin(\theta )}{cos(\theta )}\implies \cfrac{~~\frac{1}{sin(\theta )}-sin(\theta )~~}{cos(\theta )}\implies \cfrac{~~\frac{1-sin^2(\theta )}{sin(\theta )}~~}{cos(\theta )}[/tex]
[tex]\bf \cfrac{1-sin^2(\theta )}{sin(\theta )}\cdot \cfrac{1}{cos(\theta )}\implies \cfrac{\stackrel{cos(\theta )}{\begin{matrix} cos^2(\theta ) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}} }{sin(\theta )}\cdot \cfrac{1}{\begin{matrix} cos(\theta ) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix} }\implies \cfrac{cos(\theta )}{sin(\theta )}\implies cot(\theta )[/tex]
Answer:
cot Ф
Step-by-step explanation:
Recall that sin²Ф + cos²Ф = 1, (which also says that cos²Ф - 1 = sin²Ф).
Also recall the definitions of the csc, sin and cos functions.
Your expression is equivalent to:
1 sin Ф
---------- - -------------
sin Ф 1
===================
cos Ф
There are three terms in your expression: csc, sin and cos. Multiply all of them by sin Ф. The result should be:
1 - sin²Ф
---------------
sin Ф · cos Ф
Using the Pythagorean identity (see above), this simplifies to
cos²Ф
------------------
sin Ф·cos Ф
and this whole fraction reduces to
cos Ф
-------------- and this ratio is the definition of the cot function.
sin Ф
Thus, the original expression is equivalent to cot Ф