Respuesta :

Answer:

θ = π/3, 5π/3

Step-by-step explanation:

2 cos θ - 1 = 0

2 cos θ = 1

cos θ = 1/2

θ = π/3, 5π/3

ANSWER

EXPLANATION

The given trigonometric equation is:

[tex]2 \cos( \theta) - 1 = 0[/tex]

[tex] \implies \: 2 \cos( \theta) = 1[/tex]

[tex]\implies \: \cos( \theta) = \frac{1}{2} [/tex]

The cosine ratio is positive in the first and fourth quadrants.

In the first quadrant,

[tex]\theta = \cos ^{ - 1} ( \frac{1}{2}) [/tex]

[tex]\theta = \frac{\pi}{3} [/tex]

In the fourth quadrant,

[tex]\theta =2 \pi - \cos ^{ - 1} ( \frac{1}{2}) [/tex]

[tex]\theta =2 \pi - \frac{\pi}{3} [/tex]

[tex]\theta = \frac{5\pi}{3} [/tex]

Therefore on the interval, [0,2π] the solution to the given trigonometric equation is:

[tex]\theta = \frac{\pi}{3} \: and \: \frac{5\pi}{3} [/tex]