Respuesta :
Answer:
[tex]\boxed{\text{4995 pages}}[/tex]
Step-by-step explanation:
The question is asking you to find the equation of a straight line that passes through two points
Let x = the number of pages
and y = the cost
Then the coordinates of the two points are (1543, 77.40) and (7361, 368.30).
(a) Calculate the slope of the line
[tex]\begin{array}{rcl}m & = & \dfrac{y_{2} - y_{1}}{x_{2} - x_{1}}\\\\ & = & \dfrac{368.30 - 77.40}{7361 - 1543}\\\\& = & \dfrac{290.90}{58.18}\\\\ & = & 0.05000\\\end{array}[/tex]
In other words, the cost is 5¢ per page.
(b) Calculate the y-intercept
[tex]\begin{array}{rcl}y & = & mx + b\\368.30 & = & 0.05 \times 7361 + b\\368.30 & = & 368.05 + b\\b & = & 0.25\\\end{array}[/tex]
(c) Write the equation for the line
y = 0.05x + 0.25
That is, the cost is 25¢ plus 5¢ per page
(d) Calculate the pages you can print for $250
[tex]\begin{array}{rcl}y & = & 0.05x + 0.25\\250 & = & 0.05x + 0.25\\249.75 & = & 0.05x\\x & = & 4995\\\end{array}\\\text{ You can print }\boxed{\textbf{4995 pages}}[/tex]
The figure below shows the graph of your equation, with slope 0.05 and y-intercept at (0,0.25).
It looks as if you could print 5000 pages, but you must pay that 25¢ (5 pages worth) up-front, so you can print only 4995.
Answer:
4995 pages
Step-by-step explanation:
The question is asking you to find the equation of a straight line that passes through two points
Let x = the number of pages
and y = the cost
Then the coordinates of the two points are (1543, 77.40) and (7361, 368.30).
(a) Calculate the slope of the line
In other words, the cost is 5¢ per page.
(b) Calculate the y-intercept
(c) Write the equation for the line
y = 0.05x + 0.25
That is, the cost is 25¢ plus 5¢ per page
(d) Calculate the pages you can print for $250
The figure below shows the graph of your equation, with slope 0.05 and y-intercept at (0,0.25).
It looks as if you could print 5000 pages, but you must pay that 25¢ (5 pages worth) up-front, so you can print only 4995.