Answer:
Part A: 6HClO₄(aq) + Fe₂O₃(s) → 2Fe(ClO₄)₃(aq) + 3H₂O(l).
Part B: H₂SO₄(aq) + Sr(s) → SrSO₄(s) + H₂(g).
Part C: H₃PO₄(aq) + 3KOH(aq) → K₃PO₄(aq) + 3H₂O(l).
Explanation:
Part A: complete HClO₄(aq) + Fe₂O₃(s)→ Express your answer as a balanced chemical equation. Identify all of the phases in your answer.
6HClO₄(aq) + Fe₂O₃(s) → 2Fe(ClO₄)₃(aq) + 3H₂O(l).
It is clear that 6 mol of HClO₄ (in aqueous phase) react with 1 mol of Fe₂O₃ (in solid phase) to produce 2 mol of Fe(ClO₄)₃ (in aqueous phase) and 3 mol of H₂O (in liquid phase).
Part B: H₂SO₄(aq) + Sr(s) → Express your answer as a balanced chemical equation. Identify all of the phases in your answer.
H₂SO₄(aq) + Sr(s) → SrSO₄(s) + H₂(g).
It is clear that 1 mol of H₂SO₄ (in aqueous phase) reacts with 1 mol of Sr (in solid phase) to produce 1 mol of SrSO₄ (in solid phase) and 1 mol of H₂ (in gas phase).
Part C: H₃PO₄(aq) + KOH(aq) → Express your answer as a balanced chemical equation.
H₃PO₄(aq) + 3KOH(aq) → K₃PO₄(aq) + 3H₂O(l).
It is clear that 1 mol of H₃PO₄ (in aqueous phase) react with 3 mol of KOH (in aqueous phase) to produce 1 mol of K₃PO₄ (in aqueous phase) and 3 mol of H₂O (in liquid phase).