Respuesta :

Check the picture below.

so the figure is really just 3 triangles and one square, we can simply get the area of each shape and sum them up, and that's the area of the composite

[tex]\bf \stackrel{\textit{green triangle}}{\cfrac{1}{2}(9)(3.5)}+\stackrel{\textit{brown triangle}}{\cfrac{1}{2}(2)(2)}+\stackrel{\textit{purple square}}{(2\cdot 2)}+\stackrel{\textit{pink triangle}}{\cfrac{1}{2}(5)(2)} \\\\\\ 15.75+2+4+5\implies 26.75[/tex]

Ver imagen jdoe0001
gmany

Answer:

26.75

Step-by-step explanation:

Look at the picture.

We have

the right traingle with the legs a = 3.5 and b = 2 + 2 + 5 = 9

the trapezoid with the bases b₁ = 2 + 2 + 5 = 9, b₂ = 5 and the height h = 2.

The formula of an area of a right triangle:

[tex]A=\dfrac{ab}{2}[/tex]

Substitute:

[tex]A=\dfrac{(3.5)(9)}{2}=15.75[/tex]

The formula of an area of a trapezoid:

[tex]A=\dfrac{(b_1+b_2)h}{2}[/tex]

Substitute:

[tex]A=\dfrac{(9+2)(2)}{2}=11[/tex]

The area of the shape:

[tex]\bold{A=15.75+11=26.75}[/tex]

Ver imagen gmany