Respuesta :
Check the picture below.
so the figure is really just 3 triangles and one square, we can simply get the area of each shape and sum them up, and that's the area of the composite
[tex]\bf \stackrel{\textit{green triangle}}{\cfrac{1}{2}(9)(3.5)}+\stackrel{\textit{brown triangle}}{\cfrac{1}{2}(2)(2)}+\stackrel{\textit{purple square}}{(2\cdot 2)}+\stackrel{\textit{pink triangle}}{\cfrac{1}{2}(5)(2)} \\\\\\ 15.75+2+4+5\implies 26.75[/tex]
Answer:
26.75
Step-by-step explanation:
Look at the picture.
We have
the right traingle with the legs a = 3.5 and b = 2 + 2 + 5 = 9
the trapezoid with the bases b₁ = 2 + 2 + 5 = 9, b₂ = 5 and the height h = 2.
The formula of an area of a right triangle:
[tex]A=\dfrac{ab}{2}[/tex]
Substitute:
[tex]A=\dfrac{(3.5)(9)}{2}=15.75[/tex]
The formula of an area of a trapezoid:
[tex]A=\dfrac{(b_1+b_2)h}{2}[/tex]
Substitute:
[tex]A=\dfrac{(9+2)(2)}{2}=11[/tex]
The area of the shape:
[tex]\bold{A=15.75+11=26.75}[/tex]