Respuesta :

ANSWER

A.

[tex] \frac{1}{64} [/tex]

EXPLANATION

The given expression is:

[tex] {4}^{ - \frac{11}{3} } \div {4}^{ - \frac{2}{3} } [/tex]

Recall that:

[tex] {a}^{m} \div {a}^{n} = {a}^{m - n} [/tex]

We apply this property to obtain:

[tex]{4}^{ - \frac{11}{3} } \div {4}^{ - \frac{2}{3} } = {4}^{ - \frac{11}{3} - - \frac{2}{3} } [/tex]

Collect LCM

[tex]{4}^{ - \frac{11}{3} } \div {4}^{ - \frac{2}{3} } = {4}^{ \frac{ - 11 + 3}{3}} [/tex]

Simplify;

[tex]{4}^{ - \frac{11}{3} } \div {4}^{ - \frac{2}{3} } = {4}^{ \frac{ - 9}{3}} [/tex]

.

[tex]{4}^{ - \frac{11}{3} } \div {4}^{ - \frac{2}{3} } = {4}^{ - 3} [/tex]

[tex]{4}^{ - \frac{11}{3} } \div {4}^{ - \frac{2}{3} } = \frac{1}{ {4}^{3} } [/tex]

[tex]{4}^{ - \frac{11}{3} } \div {4}^{ - \frac{2}{3} } = \frac{1}{64} [/tex]

The first choice is correct