The function f(x) = ?x2 + 16x ? 60 models the daily profit, in dollars, a shop makes for selling candles, where x is the number of candles sold, and f(x) is the amount of profit. Part A: Determine the vertex. What does this calculation mean in the context of the problem? (5 points) Part B: Determine the x-intercepts. What do these values mean in the context of the problem?

Respuesta :

Cxlver

Answer:

Step-by-step explanation:

A

The vertex form: f(x) = a(x-h)^2 + k

f(x) = x^2 + 16x + 60 = (x^2 + 16x) + 60

We want to get a perfect square in the brackets, so we solve for our b^2 coefficient.

b^2 = (16/2)^2 = 64

f(x) = (x^2 + 16x + 64 - 64) + 60. Note we subtracted 60 right away to end up with an equivalent expression and not some other function.

f(x) = (x+8)^2 - 4, as you can see it matches the general vertex form.

The vertex form shows when the profit is minimal. The point (h, k) or f(h).

B. The x-intercepts or when the function is equal to 0, or the profit is 0 in the context of the problem.

f(x) = x^2 + 16x + 60 set = 0

x^2 + 16x + 60 = 0

[tex]x_{12} = \frac{-16 \pm \sqrt{256 - 4(1)(60)}}{2} = \frac{-16 \pm \sqrt{16}}{2} = \frac{-16 \pm 4}{2} = -8 \pm 2[/tex]

Answer:

the vertex is either the maximum or minimum value

since the leading coefinet is negative (the number in front of the x² term), the parabola opens down and is a maximum

so

A.

a hack version is to use the -b/(2a) form

if  you have f(x)=ax²+bx+c, then the x value of the vertex is -b/(2a)

so

given

f(x)=-1x²+16x-60

the x value of the vertex is -16/(2*-1)=-16/-2=8

the y value is f(8)=-1(8)²+16(8)-60=

-1(64)+128-60=

4

the vertex is (8,4)

so you selll 8 candels to make the max profit which is $4

B.

x intercepts are where the line crosses the x axis or where f(x)=0

solve

0=-x²+16x-60

0=-1(x²-16x+60)

factor

what 2 numbers multiply to get 60 and add to get -16

-6 and -10

0=-1(x-6)(x-10)

set each factor to 0

0=x-6

x=6

0=x-10

10=x

x intercepts are at x=6 and 10

that is where you make 0 profit

I hope u get what ur looking for and I wish u give me brainlist But I know u won't cuz everyone say that . But thank you so much if u put for me and It would be a very appreciated from you and again thank you so much

Thank you

sincerely caitlin