Respuesta :
Answer:
The width of the rectangle is [tex]9\ units[/tex]
Step-by-step explanation:
Let
x----> the length of rectangle
y----> the width of rectangle
we know that
The area of rectangle is equal to
[tex]A=xy[/tex]
[tex]A=36\ units^{2}[/tex]
so
[tex]36=xy[/tex] ------> equation A
[tex]x=y-5[/tex] -----> equation B
substitute equation B in equation A and solve for y
[tex]36=(y-5)y[/tex]
[tex]y^{2}-5y-36=0[/tex]
Solve the quadratic equation by graphing
The solution is [tex]y=9\ units[/tex]
see the attached figure
therefore
The width of the rectangle is [tex]9\ units[/tex]
Answer: 9 units.
Step-by-step explanation:
Let x be the width of the rectangle .
Then, the length would be x-5.
Area of rectangle = Length x Breadth
[tex]=(x-5)x=x^2-5x[/tex]
Since , The area of the rectangle is 36 units.
[tex]\Rightarrow\ x^2-5x=36\\\\\Rightarrow\ x^2-5x-36=0\\\\\Rightarrow\ x^2-9x+4x-36=0\\\\\Rigtarrow\ x(x-9)+4(x-9)=0\\\\\Rightarrow\ (x-9)(x+4)=0\\\\\Rightarrow\ x=9 , -4[/tex]
But width cannot be negative , so width = x= 9 units
Hence, the width of the rectangle = 9 units.