Respuesta :

ANSWER

D.

[tex]9 {y}^{2} - 4 {x}^{2}- 36y + 16x - 16 = 0[/tex]

EXPLANATION

The standard equation of the hyperbola is

[tex] \frac{ {(y - 2)}^{2} }{4} - \frac{ {(x - 2)}^{2} }{9} = 1[/tex]

We multiply through by 36 to obtain:

[tex]9 {(y - 2)}^{2} - 4( {x - 2)}^{2} = 36[/tex]

We now expand to get,

[tex]9( {y}^{2} - 4y + 4) - 4( {x}^{2} - 4x + 4) = 36[/tex]

Expand :

[tex]9 {y}^{2} - 36y + 36 - 4 {x}^{2} + 16x - 16 = 36[/tex]

To get the general form, we equate everything to zero to get,

[tex]9 {y}^{2} - 4 {x}^{2}- 36y + 16x - 16 = 0[/tex]

The correct choice is D.

Answer: D. 9y2 − 4x2 − 36y + 16x − 16 = 0

Step-by-step explanation: I got this right on Edmentum.

Ver imagen elpink25