find the angle between vector u=i+sqrt 7 j and vector v=-i-4j to the nearest degree.

a. 173 degrees
b. 145 degrees
c. 115 degrees
d. 97 degrees

Respuesta :

hence angle between vectors is option a ,173 degree

What is Vector Equation?

When an equation has both direction as well as magnitude it refers to vector equation.

How to calculate angle between two vectors?

Formula used [tex]\alpha =cos^{-1} (\frac{u.v}{|u||v|})[/tex]

u.v=1*(-1)+[tex]\sqrt{7} *(-4)[/tex]

|u|=[tex]\sqrt{ 1^{2} +\sqrt{7} ^{2}}[/tex]=[tex]2\sqrt{2}[/tex]

|v|=[tex]\sqrt{ (-1^{2}) +(-4^{2})[/tex]=[tex]\sqrt{17}[/tex]

[tex]\alpha =cos^{-1} (\frac{-1-4\sqrt{7} }{|2\sqrt{2} ||\sqrt{17} |})[/tex]

[tex]\alpha =cos^{-1} (\frac{-1-10.58}{2.82*4.12})[/tex]

[tex]\alpha =cos^{-1} (\frac{-11.58}{11.61})[/tex]

[tex]\alpha =cos^{-1} (-0.99)[/tex]

hence option a 173 degree is correct

Learn more about vectors

https://brainly.com/question/11029656

#SPJ2