Respuesta :

Answer:

  226 ft²

Step-by-step explanation:

The surface of the figure can be considered in several parts:

a) top and bottom surfaces

b) outside surfaces

c) inside surfaces

__

The top and bottom surfaces each consist of a rectangle 8 ft by 4 ft with a 4 ft by 1 ft hole. The area of the larger rectangle without the hole is the product of its length and width:

  (8 ft)(4 ft) = 32 ft²

The area of the hole is the product of its length and width:

  (4 ft)(1 ft) = 4 ft²

Then the area of the surface around the hole is the difference of these:

  32 ft² - 4 ft² = 28 ft²

The top and bottom surfaces together have twice this area for a total of ...

  top and bottom area = 2·(28 ft²) = 56 ft²

__

The outside (lateral) area is the total area of the four rectangles that make up the sides of the figure. Each rectangle has a height of 5 ft, so we can compute the area by finding the perimeter of the figure and multiplying that by 5 ft.

The perimeter is the sum of the lengths of its top or bottom edges:

  8 ft + 4 ft + 8 ft + 4 ft = 2·(8 ft +4 ft) = 2·12 ft = 24 ft

Then the lateral area is ...

  outside lateral area = (5 ft)(24 ft) = 120 ft²

__

The area of the sides of the hole can be computed the same way. The hole is 5 ft high and its edge lengths are 1 ft and 4 ft. Then the total inside lateral area is ...

  inside lateral area = (5 ft)(2·(1 ft + 4ft)) = 50 ft²

__

So the total surface area of the solid is ...

  total area = top and bottom area + outside lateral area + inside lateral area

  total area = (56 + 120 + 50) ft²

  total area = 226 ft²