A geometric sequence {an} is defined by the function

f(1) = a1 = 6 and f(n) = an = (1.2)*f(n - 1) for n ≥ 2.

Find f(38).
A)273.6
B)326.26
C)5103.3735
D)6124.0482

Respuesta :

ANSWER

C)5103.3735

EXPLANATION

The recursive definition of the given sequence is;

[tex]f(1) = a_1 = 6[/tex]

and

[tex]f(n) = a_n = (1.2) \times f(n - 1)[/tex]

The explicit definition is

[tex]f(n) = a_n =6 (1.2)^{n - 1} [/tex]

We substitute n=38 to obtain:

[tex]f(38) = a_ {38}= 6(1.2)^{37} [/tex]

[tex]f(38) = 5103.3735[/tex]

The correct choice is C.

Answer:

C

Step-by-step explanation:

I did the prep