Respuesta :

Answer:

The vertex is (2,-16)

Step-by-step explanation:

The given function is [tex]f(x)=(x-6)(x+2)[/tex]

We expand to obtain;

[tex]f(x)=x^2+2x-6x-12[/tex]

[tex]f(x)=x^2-4x-12[/tex]

We complete the squares to obtain;

[tex]f(x)=x^2-4x+(-2)^2-12-(-2)^2[/tex]

[tex]f(x)=x^2-4x+(-2)^2-12-4[/tex]

[tex]f(x)=(x-2)^2-16[/tex]

The vertex form is [tex]f(x)=(x-2)^2-16[/tex]

Comparing this to

[tex]f(x)=a(x-k)^2+k[/tex]

The vertex is (h,k)= (2,-16)