Answer:
The vertex is (2,-16)
Step-by-step explanation:
The given function is [tex]f(x)=(x-6)(x+2)[/tex]
We expand to obtain;
[tex]f(x)=x^2+2x-6x-12[/tex]
[tex]f(x)=x^2-4x-12[/tex]
We complete the squares to obtain;
[tex]f(x)=x^2-4x+(-2)^2-12-(-2)^2[/tex]
[tex]f(x)=x^2-4x+(-2)^2-12-4[/tex]
[tex]f(x)=(x-2)^2-16[/tex]
The vertex form is [tex]f(x)=(x-2)^2-16[/tex]
Comparing this to
[tex]f(x)=a(x-k)^2+k[/tex]
The vertex is (h,k)= (2,-16)