In triangle ABC, m A = 25°, m B = 55°, and a = 10.73. Use the law of sines to find b. Round your answer to the nearest tenth.

In triangle ABC m A 25 m B 55 and a 1073 Use the law of sines to find b Round your answer to the nearest tenth class=

Respuesta :

Answer:

Option A. [tex]b=20.8\ units[/tex]

Step-by-step explanation:

we know that

Applying the law of sines

[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]

substitute the values and solve for b

[tex]\frac{10.73}{sin(25\°)}=\frac{b}{sin(55\°)}\\ \\ b=10.73*sin(55\°)/sin(25\°)\\ \\b=20.8\ units[/tex]

Answer:

    20.8          option A  

Step-by-step explanation:

sine law for triangle states that

sin A / a  = sin B / b = sin C / c   ( equation for sine law )

where m A = 25°

           m B = 55°

a = 10.73

b = unknown

from the equation for sine law

sin m A / a = sin m B / b

sin 25° / 10.73 = sin 55° / b

0.4226 / 10.73 = 0.8191 / b

0.0394 = 0.8191 / b  equation 2

cross multiply equation 2 becomes

0.0394 b = 0.8191

therefore b = 0.8191 / 0.0394 = 20.789 to the nearest tenth will be 20.8