Respuesta :

Answer:

75 yd

Step-by-step explanation:

Given in the question a right angle triangle.

Base of right angle triangle = x

Height of right angle triangle = 40yd

To find x we will use trigonometry identity

TanФ = opposite / adjacent

here Ф = 62°

opposite = base

adjacent = height

Plug values in the formula to find x

Tan(62) = x / 40

   x        = (40)(Tan(62))

             = 75.229 yd

             ≈ 75 yd

Answer:

The value of x is:

              x=75.2 yard.

Step-by-step explanation:

We are given a right triangle with base 40 yard.

Also, the perpendicular length of the triangle corresponding to angle 62° is: x

Now we find the value of x using the trignometric formula as:

[tex]\tan 62\degree=\dfrac{x}{40}[/tex]

We know that the value of tan 62°=1.88073

Hence, we have:

[tex]1.88073=\dfrac{x}{40}\\\\\\x=40\times 1.88073\\\\\\x=75.2292[/tex]

         Hence, we have: x=75.2 yard