Respuesta :

Answer: second option.

Step-by-step explanation:

By definition, a function is even when:

[tex]f(x) = f(-x)[/tex]

Then, knowing this, given the function [tex]f(x)=x^3 +5x+1[/tex] you can substitute [tex]-x[/tex] into this function:

[tex]f(-x)=(-x)^3 +5(-x)+1[/tex]

Now you need to simplify the function. Then you get:

 [tex]f(-x)=-x^3 -5x+1[/tex]

In this case, you can see that:

 [tex]f(x)\neq f(-x)[/tex]

Therefore, the function [tex]f(x)=x^3 +5x+1[/tex] is not even.

As you observed in the procedure above, the statement that best describes how to determine whether the given function is even is:

Determine is [tex](-x)^3 +5(-x)+1[/tex] is equivalent to [tex]x^3 +5x+1[/tex]