Respuesta :

Answer:

[tex]sin(t) =\frac{\sqrt{7}}{4}[/tex]

Step-by-step explanation:

By definition we know that

[tex]sec(t) = \frac{1}{cos(t)}[/tex]

and

[tex]cos ^ 2(t) = 1-sin ^ 2(t)[/tex]

As [tex]sec(t) = -\frac{4}{3}[/tex]

Then

[tex]sec(t) = -\frac{4}{3}\\\\\frac{1}{cos(t)} =-\frac{4}{3}\\\\cos(t) = -\frac{3}{4}[/tex]

Now square both sides of the equation:

[tex]cos^2(t) = (-\frac{3}{4})^2[/tex]

[tex]cos^2(t) = \frac{9}{16}\\\\[/tex]

[tex]1-sin^2(t) =\frac{9}{16}\\\\sin^2(t) =1-\frac{9}{16}\\\\sin^2(t) =\frac{7}{16}\\\\sin(t) =\±\sqrt{\frac{7}{16}}[/tex]

In the second quadrant sin (t) is positive. Then we take the positive root

[tex]sin(t) =\sqrt{\frac{7}{16}}[/tex]

[tex]sin(t) =\frac{\sqrt{7}}{4}[/tex]