Calculate the energy of a photon having a wavelength in thefollowing ranges.(a) microwave, with λ = 50.00 cmeV(b) visible, with λ = 500 nmeV(c) x-ray, with λ = 0.50 nmeV

Respuesta :

(a) [tex]2.5\cdot 10^{-6}eV[/tex]

The energy of a photon is given by:

[tex]E=\frac{hc}{\lambda}[/tex]

where

[tex]h=6.63\cdot 10^{-34}Js[/tex] is the Planck constant

[tex]c=3\cdot 10^8 m/s[/tex] is the speed of light

[tex]\lambda[/tex] is the wavelength

For the microwave photon,

[tex]\lambda=50.00 cm = 0.50 m[/tex]

So the energy is

[tex]E=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{0.50 m}=4.0\cdot 10^{-25} J[/tex]

And converting into electronvolts,

[tex]E=\frac{4.0\cdot 10^{-25}J}{1.6\cdot 10^{-19} J/eV}=2.5\cdot 10^{-6}eV[/tex]

(b) [tex]2.5 eV[/tex]

For the energy of the photon, we can use the same formula:

[tex]E=\frac{hc}{\lambda}[/tex]

For the visible light photon,

[tex]\lambda=500 nm = 5 \cdot 10^{-7}m[/tex]

So the energy is

[tex]E=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{5\cdot 10^{-7} m}=4.0\cdot 10^{-19} J[/tex]

And converting into electronvolts,

[tex]E=\frac{4.0\cdot 10^{-19}J}{1.6\cdot 10^{-19} J/eV}=2.5 eV[/tex]

(c) [tex]2500 eV[/tex]

For the energy of the photon, we can use the same formula:

[tex]E=\frac{hc}{\lambda}[/tex]

For the x-ray photon,

[tex]\lambda=0.5 nm = 5 \cdot 10^{-10}m[/tex]

So the energy is

[tex]E=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{5\cdot 10^{-10} m}=4.0\cdot 10^{-16} J[/tex]

And converting into electronvolts,

[tex]E=\frac{4.0\cdot 10^{-16}J}{1.6\cdot 10^{-19} J/eV}=2500 eV[/tex]