Respuesta :

ANSWER

[tex]x = \frac{5}{4} - \frac{ \sqrt{ 17} }{4} [/tex]

or

[tex]x = \frac{5}{4} + \frac{ \sqrt{ 17} }{4} [/tex]

EXPLANATION

The given equation is:

[tex]2 {x}^{2} - 5x + 1= 0[/tex]

Comparing this to

[tex]a {x}^{2} + bx + c = 0[/tex]

we have a=2, b=-5, c=1

The quadratic formula is given by

[tex]x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]

We substitute the values to get,

[tex]x = \frac{ - - 5 \pm \sqrt{ {( - 5)}^{2} - 4(1)(2)} }{2(2)} [/tex]

[tex]x = \frac{ 5 \pm \sqrt{ 17} }{4} [/tex]

[tex]x = \frac{5}{4} - \frac{ \sqrt{ 17} }{4} [/tex]

or

[tex]x = \frac{5}{4} + \frac{ \sqrt{ 17} }{4} [/tex]

Answer:

15/7 or 17/4

Step-by-step explanation:

i took the quiz and got it right!