Respuesta :
ANSWER
[tex]x = \frac{5}{4} - \frac{ \sqrt{ 17} }{4} [/tex]
or
[tex]x = \frac{5}{4} + \frac{ \sqrt{ 17} }{4} [/tex]
EXPLANATION
The given equation is:
[tex]2 {x}^{2} - 5x + 1= 0[/tex]
Comparing this to
[tex]a {x}^{2} + bx + c = 0[/tex]
we have a=2, b=-5, c=1
The quadratic formula is given by
[tex]x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]
We substitute the values to get,
[tex]x = \frac{ - - 5 \pm \sqrt{ {( - 5)}^{2} - 4(1)(2)} }{2(2)} [/tex]
[tex]x = \frac{ 5 \pm \sqrt{ 17} }{4} [/tex]
[tex]x = \frac{5}{4} - \frac{ \sqrt{ 17} }{4} [/tex]
or
[tex]x = \frac{5}{4} + \frac{ \sqrt{ 17} }{4} [/tex]
Answer:
15/7 or 17/4
Step-by-step explanation:
i took the quiz and got it right!