Respuesta :

Answer:

Correct Option is d [tex](x+3)^2 = 11[/tex]

Step-by-step explanation:

For completing the square our equation should be in the form of [tex]a^2 +2ab + b^2 = (a+b)^2[/tex]

In the given equation we have:

[tex]x^2 +6x -2\\x^2 + 2(x) (?) +(?)^2 = 2\\for\,\, making\,\, 6x\,\, 2*x*3=6x \\so, \,\,we\,\, can\,\, add\,\, and\,\, subtract\,\, (3)^2 \,\,on\,\, both\,\, sides\\x^2 + 2(x) (3) +(3)^2 -(3)^2= 2\\(x+3)^2 -9 =2\\(x+3)^2 =2+9\\(x+3)^2 = 11[/tex]

Correct Option is d [tex](x+3)^2 = 11[/tex]