Respuesta :
Answer:
The ninth term is -0.75.
Step-by-step explanation:
Let's write the actual formula for this arith. seq.
It will have the general form a(n) = a(1) + (n-1)d, where a(1) is the first term, n is the term counter (1, 2, 3, .... ) and d is the common difference.
Here, a(n) = -2.75 + (n - 1)(0.25)
So the ninth term of this sequence is
a(9) = -2.75 + (9 - 1)(0.25
= -2.75 + 8(0.25)
= -2.75 + 2
= -0.75
The ninth term is -0.75.
Answer:
[tex]a_9=-0.75[/tex]
Step-by-step explanation:
The given sequence has the first term, [tex]a_1=-2.75[/tex] and d=0.25
The general formula for an arithmetic sequence is given by;
[tex]a_n=a_1+d(n-1)[/tex]
Since we want to find [tex]a_9[/tex], it means n=9
We substitute the given values into the formula to obtain;
[tex]a_9=-2.75+0.25(9-1)[/tex]
[tex]a_9=-2.75+0.25(8)=-0.75[/tex]
Hence, the 9th term is
[tex]a_9=-0.75[/tex]