Respuesta :

Answer:

[tex]g(x)=(\frac{1}{4}x)^2[/tex]

Step-by-step explanation:

The given functions are;

[tex]f(x)=x^2[/tex]

The function g(x) is a vertical stretch of f(x) by a factor of 'a' units, therefore we can write g(x) in terms of f(x).

This implies that;

[tex]g(x)=a\bullet f(x)[/tex]

[tex]\implies g(x)=a\bullet x^2[/tex]

The graph of g(x) passes through (4,1).

[tex]\implies g(4)=1[/tex]

[tex]\implies a(4^2)=1[/tex]

[tex]\implies 16a=1[/tex]

[tex]\implies a=\frac{1}{16}[/tex]

This implies that;

[tex]\implies g(x)=\frac{1}{16}x^2[/tex]

Or

[tex]g(x)=(\frac{1}{4}x)^2[/tex]

sthab2

Answer IN THE PICTURE BELOW

G(X)=(1/4X)^2

Ver imagen sthab2