Answer:
The length of the pen is [tex]8\ ft[/tex]
The width of the pen is [tex]6\ ft[/tex]
Step-by-step explanation:
Let
x-----> the length of the pen
y----> the width of the pen
we know that
The perimeter of the pen is
[tex]P=2(x+y)[/tex]
[tex]P=28\ ft[/tex]
so
[tex]28=2(x+y)[/tex]
[tex]14=(x+y)[/tex] ------> equation A
[tex]y=2+\frac{1}{2}x[/tex] -----> equation B
Substitute equation B in equation A and solve for x
[tex]14=x+(2+\frac{1}{2}x)[/tex]
[tex]14-2=\frac{3}{2}x)[/tex]
[tex]12=\frac{3}{2}x)[/tex]
[tex]x=12*2/3=8\ ft[/tex]
Find the value of y
[tex]y=2+\frac{1}{2}(8)=6\ ft[/tex]
therefore
The length of the pen is [tex]8\ ft[/tex]
The width of the pen is [tex]6\ ft[/tex]