Respuesta :

Answer:

[tex]m<FEH=86\°[/tex]

Step-by-step explanation:

we know that

The inscribed angle measures half that of the arc comprising

step 1

Find the measure of arc EF

[tex]m<FHE=\frac{1}{2}(arc\ EF)[/tex]

we have

[tex]m<FHE=45\°[/tex]

substitute

[tex]45\°=\frac{1}{2}(arc\ EF)[/tex]

[tex]arc\ EF=90\°[/tex]

step 2

Find the measure of arc EH

[tex]m<EGH=\frac{1}{2}(arc\ EH)[/tex]

we have

[tex]m<EGH=49\°[/tex]

substitute

[tex]49\°=\frac{1}{2}(arc\ EH)[/tex]

[tex]arc\ EH=98\°[/tex]

step 3

Find the measure of arc FGH

[tex]arc\ FGH=360\°-(arc\ EH+arc\ EF)[/tex]

substitute the values

[tex]arc\ FGH=360\°-(98\°+90\°)[/tex]

[tex]arc\ FGH=172\°[/tex]

step 4

Find the measure of angle FEH

[tex]m<FEH=\frac{1}{2}(arc\ FGH)[/tex]

we have

[tex]arc\ FGH=172\°[/tex]

substitute

[tex]m<FEH=\frac{1}{2}(172\°)=86\°[/tex]