Answer:
[tex]\large\boxed{g)\ 6xy^2=(3x)(2y^2)}\\\boxed{h)\ 25a^3b^2=(5a^2b^2)(5a)}\\\boxed{i)\ 6x+6y+6p=6(x+y+p)}[/tex]
Step-by-step explanation:
[tex]g)\ 6xy^2=3\cdot2\cdot x\cdot y\cdot y=(3\cdot x)(2\cdot y\cdot y)=(3x)(2y^2)\\\\h)\ 25a^3b^2=5\cdot5\cdot a\cdot a\cdot a\cdot b\cdot b=(5\cdot a\cdot a\cdot b\cdot b)(5\cdot a)=(5a^2b^2)(5a)\\\\i)\ 6x+6y+6p=6\cdot x+6\cdot y+6\cdot p=6(x+y+p)[/tex]
Other way for g) and h):
[tex]g)\ \dfrac{6xy^2}{3x}=\dfrac{6}{3}\cdot\dfrac{xy^2}{x}=2y^2\\\\6xy^2=(3x)(2y^2)\\\\h)\ \dfrac{25a^3b^2}{5a^2b^2}=\dfrac{25}{5}\cdot\dfrac{a^3}{a^2}\cdot\dfrac{b^2}{b^2}=5a\\\\25a^3b^2=(5a^2b^2)(5a)[/tex]