Respuesta :
Answer:
-80x + 28y - 42
4(-20x + 7y - 14)
Step-by-step explanation:
Use the distributive property a(b + c) = ab + ac:
8( -10x + 3.5y - 7)
= (8)(-10x) + (8)(3.5y) + (8)(-7)
= -80x + 28y - 42
8(-10x + 3.5y - 7)
= (4)(2)(-10x + 3.5y - 7)
= 4[(2)(-10x) + (2)(3.5y) + (2)(-7)]
= 4(-20x + 7y - 14)
The expression 8(-10x+3.5y-7) equivalent to -80x + 28y - 56.
How to solve an expression?
Let the expression be
8(-10x + 3.5y - 7)
Simplifying the above equation as
[tex]$\ 8\left(-10 x+\frac{35}{10} y-7\right)$[/tex]
Multiplying the equation, then we get
[tex]$-80 x+8 \times \frac{35}{10} y-8 \times 7$[/tex]
[tex]$-80 x+4 \times \frac{35}{5} y-56$[/tex]
[tex]$-80 x+4 \times 7 y-56$[/tex]
- 80x + 28y - 56
Therefore, the correct answer is option (b) - 80x + 28y - 56.
To learn more about the expression
https://brainly.com/question/16660014
#SPJ2