Respuesta :

gmany

Answer:

-80x + 28y - 42

4(-20x + 7y - 14)

Step-by-step explanation:

Use the distributive property a(b + c) = ab + ac:

8( -10x + 3.5y - 7)

= (8)(-10x) + (8)(3.5y) + (8)(-7)

= -80x + 28y - 42

8(-10x + 3.5y - 7)

= (4)(2)(-10x + 3.5y - 7)

= 4[(2)(-10x) + (2)(3.5y) + (2)(-7)]

= 4(-20x + 7y - 14)

The expression 8(-10x+3.5y-7) equivalent to -80x + 28y - 56.

How to solve an expression?

Let the expression be

8(-10x + 3.5y - 7)

Simplifying the above equation as

[tex]$\ 8\left(-10 x+\frac{35}{10} y-7\right)$[/tex]

Multiplying the equation, then we get

[tex]$-80 x+8 \times \frac{35}{10} y-8 \times 7$[/tex]

[tex]$-80 x+4 \times \frac{35}{5} y-56$[/tex]

[tex]$-80 x+4 \times 7 y-56$[/tex]

- 80x + 28y - 56

Therefore, the correct answer is option (b) - 80x + 28y - 56.

To learn more about the expression

https://brainly.com/question/16660014

#SPJ2