Respuesta :

Answer: OPTION C

Step-by-step explanation:

Calculate the x-coordinate of the vertex of the parabola of the function  [tex]f(x)[/tex], with the following formula:

[tex]x=-\frac{b}{2a}[/tex]

In this case:

[tex]b=8\\a=-2[/tex]

Substitute values:

[tex]x=-\frac{8}{2(-2)}=2[/tex]

Substitute [tex]x=2[/tex] into the funtion  [tex]f(x)[/tex] to find the y-coordinate of the vertex. Then:

[tex]y=-2(2)^2+8(2)-1\\y=7[/tex]

Therefore, the maximum value of  [tex]f(x)[/tex] is:

[tex]y=7[/tex]

As you can see, the y-coordinate of the vertex of the parabola  [tex]g(x)[/tex] is less than 7, therefore, you can conclude that the function that has the greater maximum value is:

[tex]f(x)[/tex]