The directed line segment from L to N has endpoints L(–6, 2) and N(5, –3). What are the x- and y-coordinates of point M, which partitions the directed line segment into the ratio 2:5?

x =

y =

Respuesta :

ANSWER

[tex]x = \frac{ - 20}{7}[/tex]

[tex]y=\frac{ 4}{7}[/tex]

EXPLANATION

The x and y coordinates of the point that partition

[tex](x_1,y_1)[/tex]

and

[tex](x_2,y_2)[/tex]

in the ratio m:n is given by:

[tex]x = \frac{mx_{2} + nx_{1}}{m + n} [/tex]

and

[tex]y= \frac{my_{2} + ny_{1}}{m + n} [/tex]

The directed line segment from L to N has endpoints L(–6, 2) and N(5, –3).

We substitute the given points,

[tex]x_1=-6[/tex]

[tex]y_1=2[/tex]

[tex]x_2=5[/tex]

[tex]y_2=-3[/tex]

[tex]m = 2[/tex]

[tex]n = 5[/tex]

This implies that;

[tex]x = \frac{2(5)+ 5( - 6)}{2 + 5} [/tex]

[tex]x = \frac{10 - 30}{2 + 5} [/tex]

[tex]x = \frac{ - 20}{7} [/tex]

[tex]y = \frac{2( - 3)+ 5( 2)}{2 + 5} [/tex]

[tex]y = \frac{ - 6+ 10}{2 + 5} [/tex]

[tex]y=\frac{ 4}{7}[/tex]

Answer:

x =  \frac{ - 20}{7}

y=\frac{ 4}{7}

Step-by-step explanation: