Respuesta :

Answer:

[tex]7,561.12\ mm^{2}[/tex]

Step-by-step explanation:

we know that

The lateral area of a cone is equal to

[tex]LA=\pi rl[/tex]

where

r is the radius of the base

l is the slant height

we have

[tex]r=80/2=40\ mm[/tex] ----> the radius is half the diameter

[tex]h=45\ mm[/tex]

To find the slant height apply the Pythagoras theorem

[tex]l^{2}=r^{2}+h^{2}[/tex]

substitute the values

[tex]l^{2}=40^{2}+45^{2}[/tex]

[tex]l^{2}=3,625[/tex]

[tex]l=60.2\ mm[/tex]

Find the lateral area

assume [tex]\pi=3.14[/tex]

[tex]LA=(3.14)(40)(60.2)=7,561.12\ mm^{2}[/tex]